Устройство солнечной батареи

blank

Что представляет собой солнечная батарея

Солнечная батарея — надежный источник энергии, который активно используется человеком. Сначала батареи прошли испытания в космосе, где доказали работоспособность. Затем изобретение стали использовать на Земле для подзарядки мобильных телефонов, электрокаров и промышленного оборудования.

Солнечная батарея привлекает людей за счет своей доступности и длительного срока эксплуатации. Конструкции доступны всем, ведь для их производства используют новые экономичные материалы. Однако все батареи делятся на виды:

  • по мощности вырабатываемого электричества — чем больше площадь панелей, тем выше мощность;
  • по типу фотоэлементов — фотохимические, органические и кремниевые.

Однако общая конструкция и тип работы у всех батарей схож.

Устройство батареи

Солнечная батарея — блок, в котором соединено определенное количество модулей. В них объединяются полупроводниковые фотоэлементы. Детали изготавливаются из разных материалов. Для промышленного использования, где нужно большое количество электроэнергии, выбирают кремний.

Фотоэлемент — тонкая панель из двухслойного кремния. Он представляет собой полупроводниковый переход. Когда на панель попадает солнечный свет, между двумя слоями кремния образуется вентильная фото-ЭДС. Возникает разница между потенциалами и током электронов.

Однако кремниевые панели неодинаковы: существуют моно- и поликристаллические элементы. Первые элементы состоят из чистого кремния без примесей и в основном используются для создания внутреннего слоя. Это одинаковые, разноразмерные многоугольники. Они дороже, однако и производительность у них значительно выше — порядка 20-25%.

Поликристаллические элементы — идеально ровные квадраты на верхнем слое. Их изготавливают с помощью поэтапного охлаждения кремния и добавления к нему посторонних материалов. Например, фосфора. Такой способ производства доступный, потому поликристаллы стоят меньше. За счет иного способа производства и структурой пластин коэффициент фотоэлектрического преобразования ниже — 15%.

Также существуют панели таких материалов:

  • аморфный кремний — позволяет вырабатывать самую дешевую электроэнергию, однако КПД материала самое низкое, 6-8%;
  • теллурид кадмия — для получения 11% электроэнергии;
  • полупроводник CIGS, включающий селен, индий, медь, галлий — среднее КПД батареи равно 15%.

Разница в составе панелей обеспечивает два типа проводимости — p-тип и n-тип.

Тыльная сторона пластины покрыта металлическим слоем. Вся конструкция защищена пластиком или стеклом, которые не позволяют внешним факторам (дождю, грязи) испортить батарею и вывести ее из строя.

blank

Как работает солнечная панель

Когда на верхний слой кремниевой панели попадают лучи, на ней генерируется электронно-дырочные пары. В результате перехода электронов из одного слоя кремния в другой в цепи появляется напряжение: на одном слое появляется положительный источник тока, а на втором — отрицательный. Разность потенциалов обеспечивает беспрепятственное прохождение только электронов с n-слоя.

Когда фотоэлементы подключаются к аккумулятору, по всей конструкции непрерывно перемещаются электроны. В результате аккумулятор набирает заряд, которые потом передается электроприборам.

Так почему же КПД инновационных батарей даже при использовании монокремниевых фотоэлементов остается не 100%, а гораздо меньше? Все дело в фотоэлектрическом оттоке, который обеспечивают лишь те электроны, которые обладают более высокой энергией, нежели ширина специально выделенной зоны. Если энергия меньше, то электрон просто не участвует в процессе.

Обойти это физическое ограничение поможет использование многослойных конструкций. Там используются плиты с различной шириной и солнечный свет попадает сначала на самый широкий фотоэлемент. Поэтому в первую очередь поглощаются фотоны с наибольшей энергией.

Затем фотоны с меньшей энергией, которые были пропущены верхним слоем, попадают на следующий уровень. И батарея вновь преобразует их в энергию. Таким образом общая производительность может быть повышена до 35%.

blank

Заключение

При довольно простом устройстве солнечные батареи способны вырабатывать электроэнергию, которая частично обеспечит работу бытовых и промышленных приборов. Однако пока даже современные батареи не могут стать полноценным и единственным источником энергии.